

Estrategia de crecimiento, silvicultura y rendimiento en productos derivados de boldo

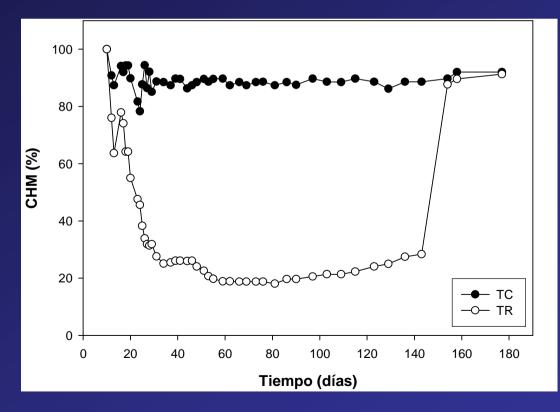
Sergio Donoso y Karen Peña
Programa de Bosques Mediterráneos
Facultad de Ciencias Forestales y Conservación de la Naturaleza
Universidad de Chile

Seminario
Talca 18 de noviembre de 2010

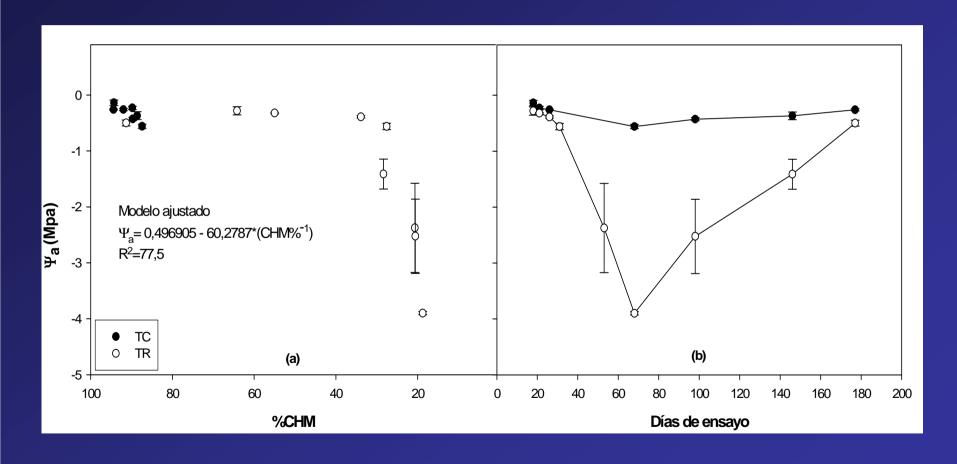
Evaluación de variables hídricas y de crecimiento en plantas de boldo sometidas a restricción hídrica

Evaluación de la producción y productividad en biomasa aérea de boldo en un bosque esclerófilo de la Comuna de María Pinto, Provincia de Melipilla.

Evaluación de la producción de boldo en un bosque de la comuna de La Ligua y rendimiento en boldina y aceite esencial bajo diferentes condiciones de secado.


Objetivos

- >Evaluar las respuestas fisiológicas
- > Conocer el mecanismo de tolerancia
- > Respuestas en crecimieto y biomasa

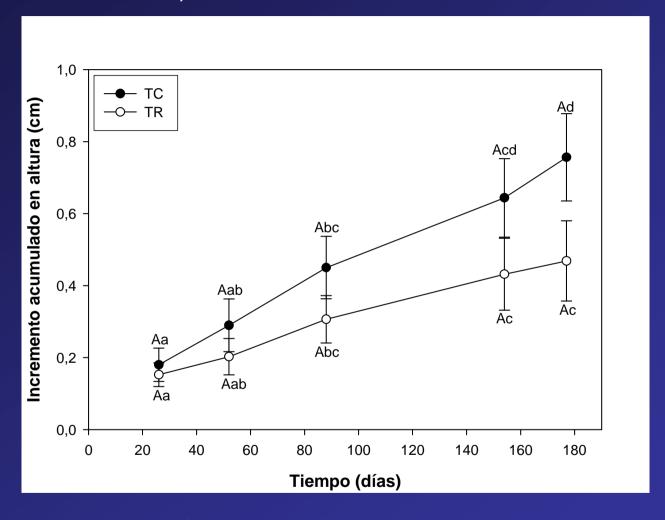


Contenido hídrico de las macetas (CHM%), promedio por día de medición para el tratamiento control (TC) y el tratamiento de restricción hídrica (TR), durante el desarrollo del ensayo.

Evolución del potencial hídrico al alba (Ψ_a), versus el contenido hídrico de la maceta (%CHM) (a) y versus los días de ensayo (b) para el tratamiento control (TC) y el tratamiento de restricción hídrica (TR) durante el desarrollo del ensayo (medias \pm error estándar, n=6).

Valores de contenido hídrico de la maceta (CHM%), potencial hídrico al alba (Ψ_a) , contenido hídrico relativo al alba (CHR $_a$) y día de medición desde el inicio del ensayo para el tratamiento control (TC) y el tratamiento de restricción hídrica (TR) durante el desarrollo del ensayo (medias \pm error estándar, n=6).

Día	Tratamiento	CHM (%)	Ψ _a (Mpa)	CHR _a (%)
18	TC	94,3	-0,14 ± 0,05 Aa	90,70 ± 2,35 Aa
10	TR	64,2	-0,28 ± 0,07 Aa	89,78 ± 1,71 Aa
21	TC	89,8	-0,23 ± 0,03 Aa	89,15 ± 0,53 Aa
Z I	TR	55,0	-0,32 ± 0,01 Ba	83,71 ± 6,00 Aa
26	TC	94,4	-0,26 ± 0,01 Aab	91,84 ± 1,20 Aa
20	TR	33,9	$-0,39 \pm 0,02$ Bab	91,08 ± 1,39 Aa
60	TC	87,4	-0,56 ± 0,04 Ac	91,86 ± 0,71 Aa
68	TR	18,8	-3,90 ± 0,03 Bc	58,68 ± 3,79 Bb
177	TC	92,0	-0,26 ± 0,02 Aab	89,07 ± 0,60 Aa
	TR	91,3	-0,50 ± 0,05 Bb	82,51 ± 0,89 Ba

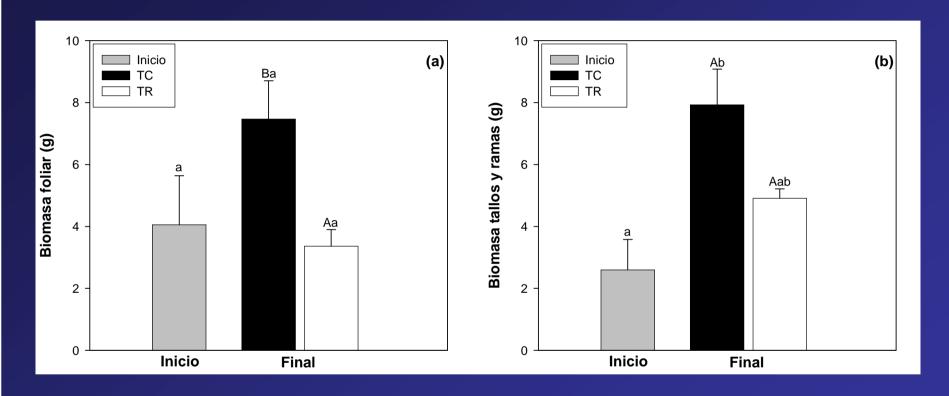

Las letras mayúsculas y minúsculas distintas indican diferencias significativas (p < 0,05) entre los tratamientos y dentro del tratamiento respectivamente, para cada parámetro según %CHM durante el ensayo.

Valores promedio de: contenido hídrico relativo a cero turgor (CHR₀), potencial de presión a pleno turgor (Ψ_{Pt}), potencial osmótico a pleno turgor (π_{100}), potencial osmótico a cero turgor (π_0) y módulo de elasticidad (ϵ), a distintos %CHM y día de medición desde el inicio del ensayo para cada tratamiento (Trat) (medias \pm error estándar, n=4).

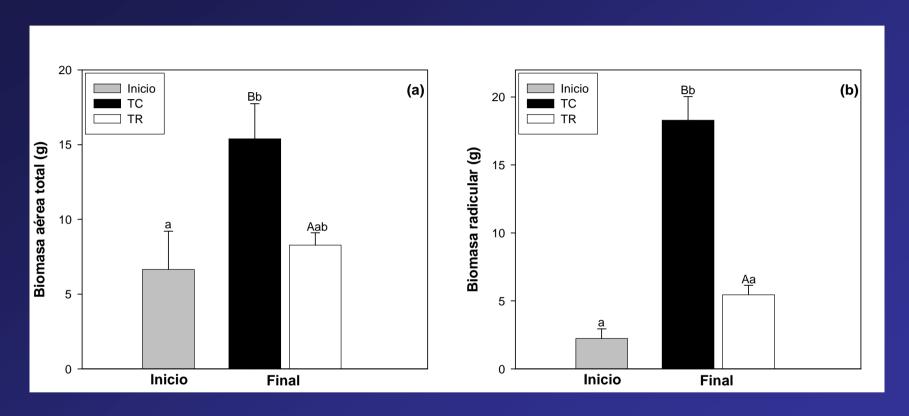
Día	Trat	CHM (%)	CHR ₀ (%)	Ψ _{Pt} (Mpa)	π ₁₀₀ (Mpa)	π ₀ (Mpa)	3
18	TC	94,3	75,5 ± 2,9 Aa	1,6 ± 0,2 Aa	-1,7 ± 0,2 Aa	-2,3 ± 0,2 Aa	9,3 ± 2,2 Aa
10	TR	64,0	78,3 ± 4,7 Aa	1,7 ± 0,0 Aa	-1,8 ± 0,0 Aa	-2,4 ± 0,0 Aa	10,6 ± 1,7 Aab
26	TC	94,4	84,0 ± 0,9 Aa	1,9 ± 0,0 Aab	-2,0 ± 0,1 Aa	-2,5 ± 0,0 Aab	14,0 ± 0,9 Aa
20	TR	33,0	81,5 ± 2,1 Aa	1,9 ± 0,1 Aa	-1,9 ± 0,1 Aa	-2,4 ± 0,1 Aa	13,7 ± 1,9 Aa
68	TC	87,4	82,8 ± 1,7 Aa	1,9 ± 0,1 Aab	-2,0 ± 0,1 Aa	-2,7 ± 0,0 Abc	13,6 ± 1,1 Aa
00	TR	18,8	77,0 ± 3,2 Aa	1,5 ± 0,1 Ba	-1,6 ± 0,2 Aa	-2,4 ± 0,1 Aa	6,8 ± 1,9 Bb
177	TC	92,0	78,5 ± 3,8 Aa	2,2 ± 0,1 Ab	-2,1 ± 0,1 Aa	-3,0 ± 0,1 Bc	10,8 ± 1,6 Aa
	TR	91,0	76,5 ± 3,7 Aa	1,8 ± 0,1 Ba	-1,7 ± 0,1 Aa	-2,5 ± 0,1 Aa	8,9 ± 1,4 Aab


Las letras mayúsculas y minúsculas distintas indican diferencias significativas (p < 0,05) entre los tratamientos y dentro del tratamiento respectivamente, para cada parámetro según %CHM durante el ensayo.

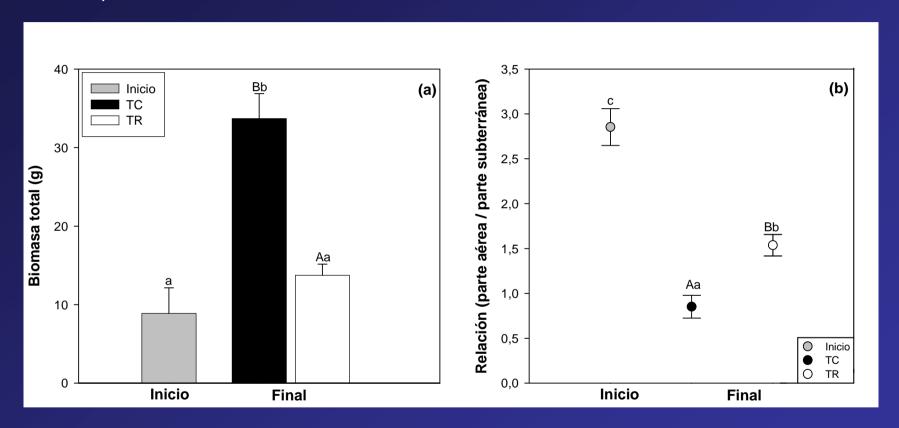
Incremento acumulado en altura (L) de las plantas a lo largo del tiempo (medias ± error estándar).


Las letras mayúsculas y minúsculas distintas indican diferencias significativas (p < 0,05) entre los tratamientos y dentro del tratamiento respectivamente, durante el ensayo

Incremento acumulado del diámetro a la altura del cuello (DAC) a lo largo del tiempo (medias ± error estándar).

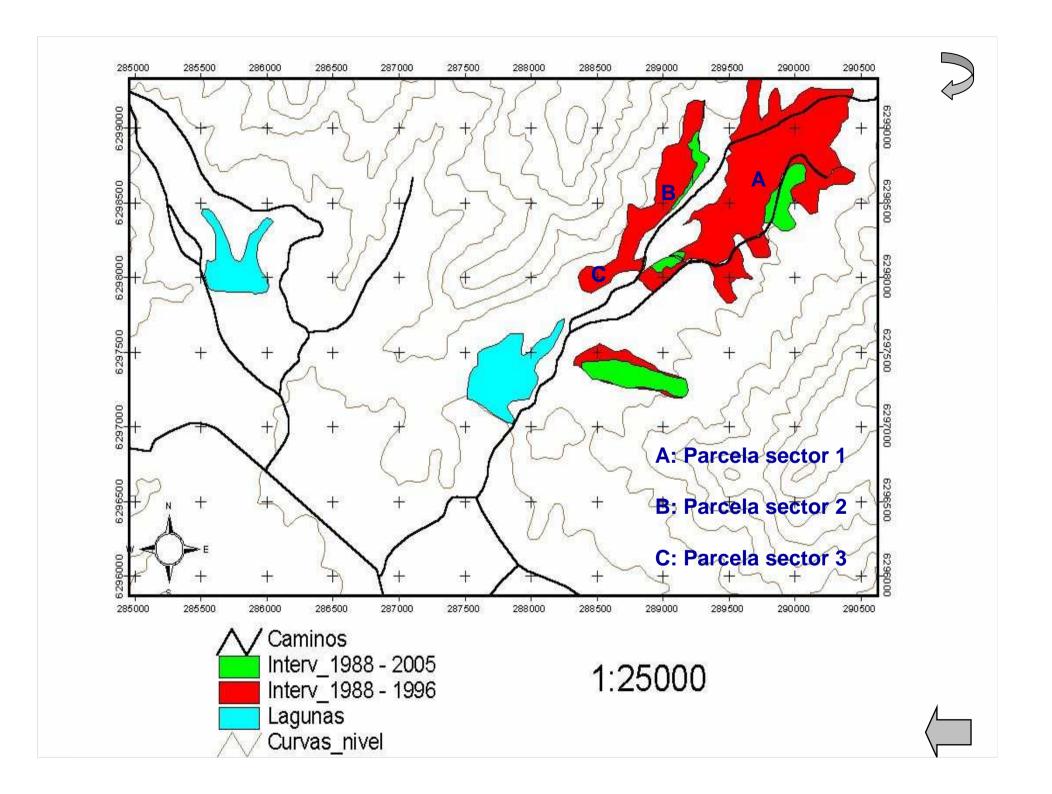


Las letras mayúsculas y minúsculas distintas indican diferencias significativas (p < 0,05) entre los tratamientos y dentro del tratamiento respectivamente, durante el ensayo


Biomasa foliar (a) y biomasa de tallos y ramas (b) al inicio y final del período de restricción hídrica (medias ± error estándar; n=3).

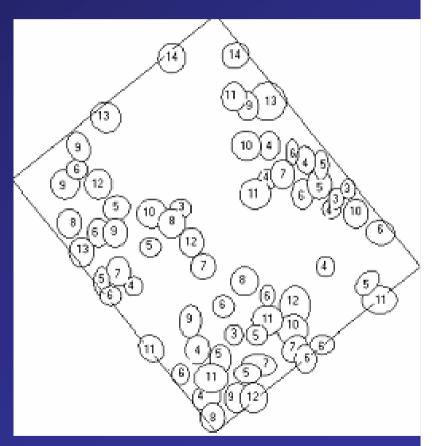
Biomasa aérea total (a) y biomasa radicular (b) al inicio y final del período de restricción hídrica (medias ± error estándar; n=3).

Biomasa total (a) y relación parte aérea/parte subterránea (b) al inicio y final del período de restricción hídrica (medias ± error estándar; n=3).

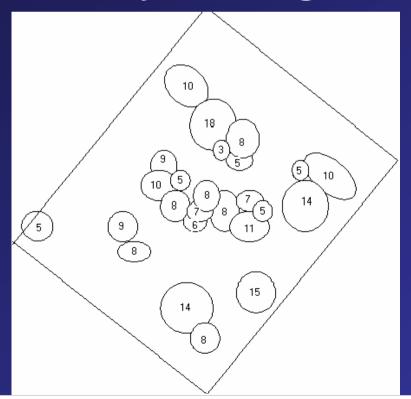


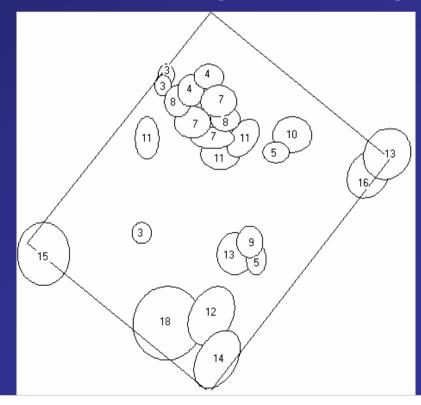
Distribución porcentual de la biomasa (%), estimados al inicio y final del ensayo para cada tratamiento (medias ± error estándar, n=3).

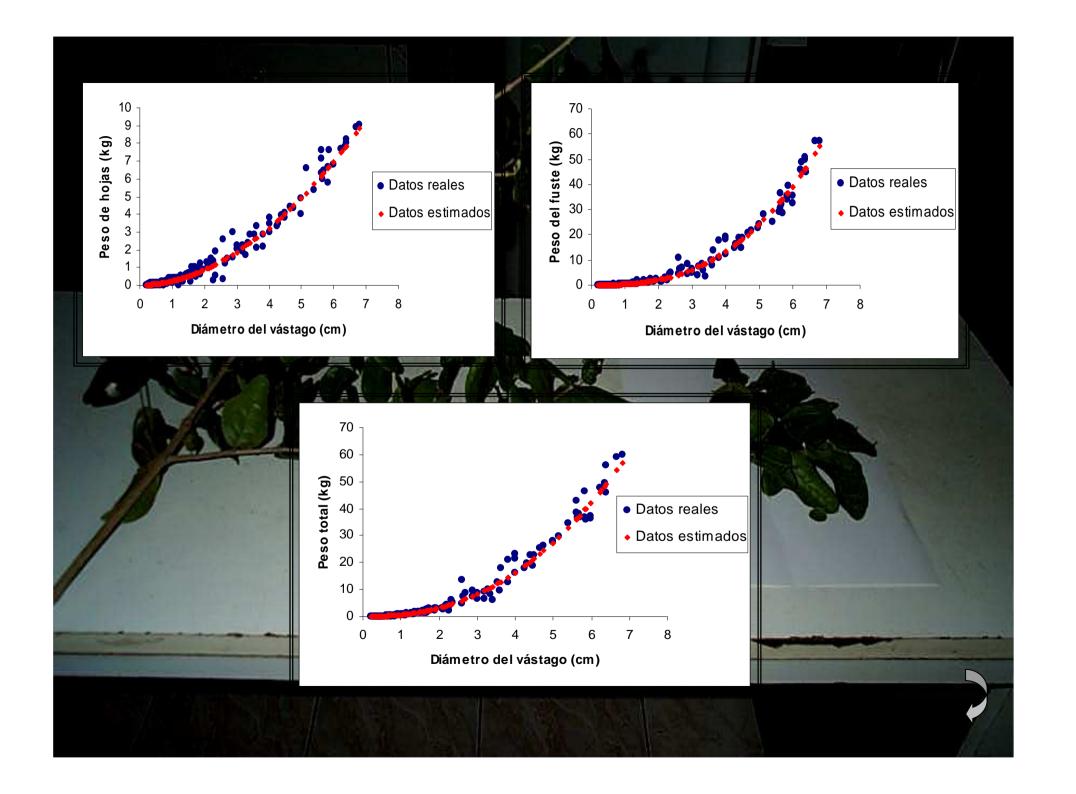
Distribución porcentual de la biomasa	Inicio del	Fin del ensayo		
(%)	ensayo	TR	тс	
Aérea total (hojas + tallo y ramas)	73,9 ± 1,3 a	60,4 ± 1,9 Bb	45,5 ± 4,0 Ac	
Hojas	45,1 ± 1,2 a	24,3 ± 1,6 Ab	21,9 ± 1,8 Ab	
Tallo y Ramas	28,8 ± 1,1 a	36,1 ± 1,7 Bb	23,5 ± 2,4 Aa	
Raíces	26,1 ± 1,3 a	39,6 ± 1,9 Ab	54,5 ± 4,0 Bc	



RESULTADOS


Especies	SECTOR 1	SECTOR 2	SECTOR 3
Lapedies	Nha	Nha	Nha
Boldo (<i>Peumus boldus</i>)	1420	580	480
Espino (<i>Acacia caven</i>)	80	800	360
Molle (Schinus latifolius)	80	20	20
Quillay (Quillaja saponaria)	520	20	100
Peumo (<i>Cryptocarya alba</i>)	140	0	40
Maiten (<i>Maytenus boaria</i>)	0	20	0
Huingan (Schinus polygamus)	0	60	20
TOTAL ESPECIES	2.240	1.500	1.020


Caracterización de la cosecha de hojas


- > Sector 1
- Área basal (boldo): 9,3 m²/ha
- Sector intervenido desde el año 1990
- Edad de los vástagos entre 3 a 9 años (70%)
- Extracción de todos los vástagos de un individuo

- Sector 2 Sector 3
- Intervenciones desde el año 1982
- Mayor edad de los vástagos
- Estructura más abierta producto de menor densidad y menor grado de extracción (selección)

Producción y productividad de biomasa aérea

> Producción de biomasa

Producción de biomasa por componentes

PARCELAS	ÁRBOLES	BIOMASA DE HOJAS		BIOMASA DE FUSTE		BIOMASA TOTAL	
174(0227(0	(Nha)	kg	t/ha	kg	t/ha	kg	t/ha
1	1.420	111,19	2,22	438,02	8,76	530,62	10,61
2	580	64,72	1,29	315,05	6,30	347,01	6,94
3	480	61,07	1,22	313,34	6,27	338,39	6,76

Productividad media por componentes

Productividad media, influida por condiciones de crecimiento de la especie (sitio, competencia, agua)

EDAD	PRODUCTIVIDAD MEDIA (kg/individuo/año)				
	HOJA	FUSTE	TOTAL		
3	0,12	0,25	0,39		
4	0,16	0,36	0,54		
5	0,17	0,47	0,65		
6	0,18	0,49	0,69		
7	0,19	0,68	0,88		
8	0,21	0,75	0,94		
9	0,21	0,84	1,02		
10	0,24	0,98	1,17		
11	0,24	1,19	1,31		
12	0,26	1,26	1,38		
13	0,28	1,63	1,64		
14	0,32	1,75	1,77		
15	0,41	1,91	2,15		
16	0,47	2,02	2,36		
20	0,60	3,28	3,72		

		PRODUCTIVIDAD (kg/ha/año)				
SECTOR	DENSIDAD (Nha)	BIOMASA FOLIAR	BIOMASA FUSTAL	BIOMASA TOTAL		
1	1.420	308	1.276	1.494		
2	580	154	668	781		
3	480	125	554	639		

- Incrementos condicionados por la velocidad de recuperación después de una intervención, así como por las características de los individuos

Producción de biomasa aérea

			SA DE JAS		ASA DE STE		MASA DTAL
Sector	Árboles (Nha)	kg	t/ha	kg	t/ha	kg	t/ha
1	1.420	111,19	2,22	438,02	8,76	530,62	10,61
2	580	64,72	1,29	315,05	6,30	347,01	6,94
3	480	61,07	1,22	313,34	6,27	338,39	6,76

Producción de biomasa aérea Pullally

Tipo de bosque	Nv/ha	Biomasa de hojas (t/ ha)	Biomasa de corteza (t/ ha)	Biomasa fuste (t/ ha)	Biomasa total (t/ ha)
Ralo	1440	0,80	0,007	5,33	6,31
Semidenso	3856	1,90	0,022	12,59	14,83

Rendimientos de aceite esencial y ascaridol en hojas tratamientos de secado

Tratamiento	Aceite esencial (%)	Ascaridol (%)
Secado Tº ambiente	2,26 a	64,22 a
Secado a 30°C	2,74 a	77,93 b
Secado a 65°C	2,86 a	64,96 a

Rendimientos de alcaloides y boldina en hojas tratamientos de secado

Tratamiento	Alcaloides (%)	Boldina (%)
Secado Tº ambiente	0,22 a	13,12 a
Secado a 30°C	0,15 a	15,39 a
Secado a 65°C	0,18 a	16,69 a

Comentarios Finales

- El uso actual de las formaciones con presencia de boldo, no pareciera que fuese sustentable, tanto en la forma como en la intensidad de la cosecha.
- Falta información de rendimientos de aprovechamientos y respuesta del bosque residual (Proyecto Ley BN).
- Boldo presenta varios metabolitos de interés que hacen a esta especie, junto a otras del Bosque Mediterráneo, sean de interés para la industria química de productos naturales.
- El potencial de esta especie, y otras del bosque Mediterráneo, se encuentra en el valor de los compuestos químicos que presentan, por lo tanto el uso y silvicultura debe orientarse a maximizar estos metabolitos.

